

world-leading technology world-leading company

Technical Profile

Synchronous magnet drive, hydraulic pumps

200 60 2900 min⁻¹ 50 150 40 3 Head m 100 Jead 30 2 20 50 10 0 ۵ 2 20 40 50 70 3 4 5 8 10 30 Flowrate m³/h 1 8 10 20 40 100 200 6 30 60 300 4 Flowrate usgpm Pump model

	(Imperial)	(Metric)
1	1.5 x 1 x 6H	50-32-160H
2	3 x 1.5 x 6H	65-50-160H
3	1.5 x 1 x 8	50-32-200
4	3 x 1.5 x 8H	65-40-200H

Range capabilities

Model	Head	Flow	Temperature	Pressure	Viscosity Cst	Mounting	
SPGSO	37 m 121 ft	14 m ³ /h 62 usgpm	-40 to +120°C -40 to +250°F	10 bar 145 psi	200	Close coupled (CC) or Separate Mounted (SM)	
SPGSI	52 m 170 ft	25 m ³ /h 110 usgpm	-40 to +120°C -40 to +250°F	10bar 145 psi	200	Close coupled (CC) or Separate Mounted (SM)	

GS self priming

Product overview

The SPGS product covers an hydraulic range that is split between two frame sizes, Frames 0 & 1.

Technical profiles are available for the complete range of HMD/Kontro GS based pumps up to frame IV.

The pumps are offered with a range of Synchronous Magnet Drives rated to match prime mover performance. Prime mover specifications of all denominations can be catered for.

This range is designed, primarily, for the emptying of sumps and road/rail tankers.

The standard materials of construction are stainless steel with silicon carbide internal bearings.

Design range limits

The SPGS pump is designed to operate from -40°C up to +120°C, -40°F up to +250°F without the need for any ancillary cooling medium. Design working pressure is 10 bar, 145 psi.

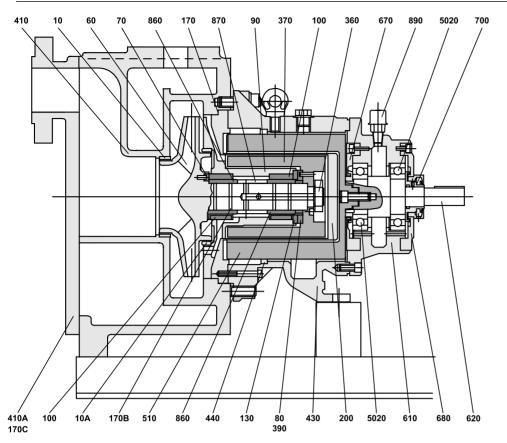
Solids handling capability

The unit is capable of handling solids up to 5% w/w with 150 microns.

20,C

Options

Materials of construction


Wetted Parts	Alloy
Gaskets	PTFE

Other options

Large range of pump protection.

Performance of the GS self priming range

Construction of the SPGS range

10	Neck Ring (Front)	Stainless Steel
10A	Neck Ring (Back)	Stainless Steel
50	Coupling Washer	Stainless Steel
60	Impeller	Stainless Steel
70	Front Thrust Washer	Alpha SiC
80	Back Thrust Washer	Alpha SiC
90	Bush Holder	Stainless Steel
100	Bush	Alpha SiC
130	Thrust Pad	Alpha SiC
170	Gasket (Shroud)	CSF/PTFE
170B	'O' Ring	Viton A
170C	Casing Cover Gasket	CSF/PTFE
200	Containment Shroud/Shell	Alloy C & SS
360	Coupling Nut	Stainless Steel
370	Inner Magnet Ring	Stainless Steel
390	Support Gasket	Exfoliated Graphite & Ni
410	Casing	Stainless Steel
410A	Casing Cover	Stainless Steel
430	Coupling Housing	SG Iron
440	Bump Ring	Phosphor Bronze
510	Outer Magnet Ring	Carbon Steel
610	Bearing Housing	SG Iron
620	Drive Shaft	Carbon Steel
670	Front Cap	Carbon Steel
680	Back Cap	Carbon Steel
700	Labyrinth Seal (Kit)	Brass
860	Shaft Sleeve	Alpha SiC
870	Shaft Sleeve Spacer	Stainless Steel
890	Breather	Stainless Steel
5020	Race	Steel

Flanges and Connections

Casing

Suction and discharge flanges are designed in accordance with the following relevant standards:

ANSI B16.5 Class 150	Machined with 1.5mm (0.06") high raised face having a continuous spiral groove.

BS 4505/DIN 2543 PN 16 with 2mm (0.08") high raised face having a continuous spiral groove.

Discharge flanges are supplied with studded connections.

Flange Loadings

Allowable flange loadings imposed by pipework are in accordance with Table 2 of API 610 8th edition and exceed the values in ANSI 5199 Annex C.

Drain Connections*

The following drain options are available:

Standard:	1/2" BSP plug
Option 1:	No drain
Option 2:	½″ NPT plug
Option 3:	1/2" flanged drain rated to the casing flanges

Gauge Connections:

No provision for gauge connections has been made on this frame of pump.

Features and user benefits of the SPGS Pump range

- Seal/less design total product containment ideal for hydrocarbon, petrochemical, toxic, aggressive, hot, crystallising and valuable product.
- Maximum interchangeability of components with standard GS pump.
- Modular/Interchangeable high efficiency magnetic couplings.
- Choice of various metallic materials of construction.
- Casing gasket fully confined to eliminate 'Blowout' risk.
- Various suction and discharge flange connection options.
- Maximum interchangeability exists between spare parts for the entire range.
- Cartridge assemblies allowing fast replacement of the rotating element.
- Internationally approved pressure vessel standard: ASME VIII code.

Overall benefits to the user

- Ease of application
- Low capital cost
- Design ensures safe, leak free operation
- Low running costs
- Minimal spares holding
- Minimal downtime/fast maintenance
- Maximises on-line process time

_

									loles - FØ			B1 B1 B		
Pump size	Α	В	B1	С	D	Ε	F	G	Н	J	К	Motor Frame	L	
1.5x1x6H	220/8.66"	312/12.28"	131/5.16″	350/13.78"	400/15.75"	12/0.5″	14/0.55″	238/9.4"	100/3.93″	440/17.32"	500/19.7″	80-90	143/33.2″	
1.5x1x8	245/9.65"	340/13.38"	156/6.14″	350/13.78″	400/15.75″	12/0.5″	14/0.55″	238/9.4"	100/3.93″	440/17.32"	500/19.7″	100-112	909/35.8″	
3x1.5x6H	220/8.66"	312/12.28"	112.5/4.43″	350/13.78"	400/15.75"	12/0.5″	14/0.55″	238/9.4"	108/4.28″	440/17.32"	500/19.7″	132	1015/40″	
3x1.5x8H	245/9.65"	340/13.38"	135/5.3″	350/13.78"	400/15.75″	12/0.5″	14/0.55″	238/9.4"	108/4.28″	440/17.32"	500/19.7"	160	1150/45.3″	
												180	1210/47.6″	
50-32-160H	220/8.66"	312/12.28"	131/5.16″	350/13.78″	400/15.75″	12/0.5″	14/0.55″	238/9.4″	100/3.93″	440/17.32"	500/19.7″	143-145	841/33.1″	
50-35-200	245/9.65"	340/13.38"	156/6.14″	350/13.78″	400/15.75"	12/0.5″	14/0.55″	238/9.4″	100/3.93″	440/17.32"	500/19.7″	182-184	934/36.8″	
65-50-160H	220/8.66"	312/12.28"	112.5/4.43″	350/13.78"	400/15.75"	12/0.5″	14/0.55″	238/9.4"	108/4.28″	440/17.32"	500/19.7″	213-215	1031/40.6"	
65-40-200H	245/9.65"	340/13.38"	135/5.3″	350/13.78"	400/15.75"	12/0.5″	14/0.55″	238/9.4"	108/4.28″	440/17.32"	500/19.7″	254-256	1145/45.1″	
Dimonsions sh	own aro motr	ic/importal (ir	(choc)											

Dimensions shown are metric/imperial (inches).

Pressure limits

All parts are to be rated to the pressures shown below at 38°C (100°F)

Flange standard		Design pressure		
	316 St St	Alloy 20	Alloy C	
ANSI B16.5 Class 150	1.00 N/mm2 145 psi	1.00N/mm2 145 psi	1.00 N/mm2 145 psi	
BS 4504 PN 16	1.00 N/mm2 145 psi	1.00 N/mm2 145 psi	1.00 N/mm2 145psi	
DIN 2543	1.00 N/mm2 145 psi	1.00 N/mm2 145 psi	1.00 N/mm2 145 psi	
Component	Hydrostatic test value			
	316 St St	Alloy 20	Alloy C	
Casing (ANSI 150 lb)	1.50N/mm2 218 psi	1.50 N/mm2 218 psi	1.50 N/mm2 218 psi	
Casing (PN 16)	1.50 N/mm2 218 psi	1.50 N/mm2 218 psi	1.50 N/mm2 218 psi	
Containment Shroud/Shell	2.93 N/mm2 425 psi	2.41 N/mm2 350 psi	3.10 N/mm2 450 psi	

Temperature limits

Standard Range

SELF PRIMING OPERATION

In general, centrifugal pumps and their suction pipework, have to be filled with liquid prior to starting up (ie primed). Self priming pumps are capable of priming their suction pipework themselves.

The priming cycle begins with an initial charge of liquid to the large priming chamber (casing) via the filling port, allowing the pipework to remain in situ. The casing design allows a large volume of liquid to remain in the casing for repriming in the event that the suction and discharge lines drain back to source.

On start up the initial charge of liquid that fills the internal volute is expelled into the casing discharge reservoir by the centrifugal action of the impeller. Simultaneously, a lower pressure is formed in the suction allowing in air from the suction line. Air is drawn into the casing by a combination of the low pressure in the suction and the atmospheric pressure acting on the liquid in the open tank.

The priming action is a process by which air from the suction line is drawn into the lower pressure impeller eye and is mixed with liquid from the casing discharge reservoir which has recirculated through the lower inner volute. The liquid/air mixture is rotated inside the inner volute and is selectively discharged through the top inner volute by the centrifugal action of the impeller and the variation in specific gravities of the air and liquid. Additionally, the mixture of air and liquid collides with an air separation plate as it leaves the inner volute, causing the separation of air to be accelerated. The liquid passes over the plate in the lower portion of the casing from where it returns to the impeller. The air passes into the casing discharge reservoir which, by providing a relatively large free liquid surface, allows a reduction in velocity which further assists the separation and venting of the air out of the casing discharge.

As the liquid in the casing is circulating, the pressure remains low in the suction and air continues to be drawn from the suction pipework. The liquid rises in the suction pipe and, once all the air is evacuated, fills the pump which then runs like any other centrifugal pump. If a pocket of air exists in the suction pipework and the pump loses prime, it will fully recover and reprime to continue pumping.

Suction lifts in excess of 5 metres are achievable in less than 1 minute.

HMD Seal/less Pumps Ltd. Brampton Road, Hampden Park Industrial Estate, Eastbourne, East Sussex, BN22 9AN, England Tel: 01323 452000 Fax: 01323 503369 Tel: (Int) +44 1323 452000 Fax: (Int) +44 1323 503369 email: pumps@hmdpumps.com www.hmdkontro.com